SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Albanes Demetrius) ;pers:(Kraft Peter);pers:(Hoover Robert N.)"

Search: WFRF:(Albanes Demetrius) > Kraft Peter > Hoover Robert N.

  • Result 1-10 of 21
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Ahn, Jiyoung, et al. (author)
  • Quantitative trait loci predicting circulating sex steroid hormones in men from the NCI-Breast and Prostate Cancer Cohort Consortium (BPC3).
  • 2009
  • In: Human molecular genetics. - : Oxford University Press (OUP). - 1460-2083 .- 0964-6906. ; 18:19, s. 3749-57
  • Journal article (peer-reviewed)abstract
    • Twin studies suggest a heritable component to circulating sex steroid hormones and sex hormone-binding globulin (SHBG). In the NCI-Breast and Prostate Cancer Cohort Consortium, 874 SNPs in 37 candidate genes in the sex steroid hormone pathway were examined in relation to circulating levels of SHBG (N = 4720), testosterone (N = 4678), 3 alpha-androstanediol-glucuronide (N = 4767) and 17beta-estradiol (N = 2014) in Caucasian men. rs1799941 in SHBG is highly significantly associated with circulating levels of SHBG (P = 4.52 x 10(-21)), consistent with previous studies, and testosterone (P = 7.54 x 10(-15)), with mean difference of 26.9 and 14.3%, respectively, comparing wild-type to homozygous variant carriers. Further noteworthy novel findings were observed between SNPs in ESR1 with testosterone levels (rs722208, mean difference = 8.8%, P = 7.37 x 10(-6)) and SRD5A2 with 3 alpha-androstanediol-glucuronide (rs2208532, mean difference = 11.8%, P = 1.82 x 10(-6)). Genetic variation in genes in the sex steroid hormone pathway is associated with differences in circulating SHBG and sex steroid hormones.
  •  
2.
  • Amundadottir, Laufey, et al. (author)
  • Genome-wide association study identifies variants in the ABO locus associated with susceptibility to pancreatic cancer.
  • 2009
  • In: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 41, s. 986-990
  • Journal article (peer-reviewed)abstract
    • We conducted a two-stage genome-wide association study of pancreatic cancer, a cancer with one of the lowest survival rates worldwide. We genotyped 558,542 SNPs in 1,896 individuals with pancreatic cancer and 1,939 controls drawn from 12 prospective cohorts plus one hospital-based case-control study. We conducted a combined analysis of these groups plus an additional 2,457 affected individuals and 2,654 controls from eight case-control studies, adjusting for study, sex, ancestry and five principal components. We identified an association between a locus on 9q34 and pancreatic cancer marked by the SNP rs505922 (combined P = 5.37 x 10(-8); multiplicative per-allele odds ratio 1.20; 95% confidence interval 1.12-1.28). This SNP maps to the first intron of the ABO blood group gene. Our results are consistent with earlier epidemiologic evidence suggesting that people with blood group O may have a lower risk of pancreatic cancer than those with groups A or B.
  •  
3.
  • Arslan, Alan A., et al. (author)
  • Anthropometric Measures, Body Mass Index, and Pancreatic Cancer A Pooled Analysis From the Pancreatic Cancer Cohort Consortium (PanScan)
  • 2010
  • In: Archives of Internal Medicine. - 0003-9926. ; 170:9, s. 791-802
  • Journal article (peer-reviewed)abstract
    • Background: Obesity has been proposed as a risk factor for pancreatic cancer. Methods: Pooled data were analyzed from the National Cancer Institute Pancreatic Cancer Cohort Consortium (PanScan) to study the association, between prediagnostic anthropometric measures and risk of pancreatic cancer. PanScan applied a nested case-control study design and included 2170 cases and 2209 control subjects. Odds ratios (ORs) and 95% confidence intervals (CIs) were estimated using unconditional logistic regression for cohort-specific quartiles of body mass index (BMI [calculated as weight in kilograms divided by height in meters squared]), weight, height, waist circumference, and waist to hip ratio as well as conventional BMI categories (underweight, <18.5; normal weight, 18.5-24.9; overweight, 25.0-29.9; obese, 30.0-34.9; and severely obese, >= 35.0). Models were adjusted for potential confounders. Results: In all of the participants, a positive association between increasing BMI and risk of pancreatic cancer was observed (adjusted OR for the highest vs lowest BMI guartile, 1.33; 95% Cl, 1.12-1.58; P-trend<.001). In men, the adjusted OR for pancreatic cancer for the highest vs lowest quartile of BMI was 1.33 (95% Cl, 1.04-1.69; P-trend<.03), and in women it was 1.34 (95% Cl, 1.05-1.70; P-trend=.01). Increased waist to hip ratio was associated with increased risk of pancreatic cancer in women (adjusted OR for the highest vs lowest quartile, 1.87; 95% Cl, 1.31-2.69; P-trend=.003) but less so in men. Conclusions: These findings provide strong support for a positive association between BMI and pancreatic cancer risk. In addition, centralized fat distribution may increase pancreatic cancer risk, especially in women. Arch Intern Med. 2010;170(9):791 -802
  •  
4.
  • Berndt, Sonja I, et al. (author)
  • Large-scale fine mapping of the HNF1B locus and prostate cancer risk
  • 2011
  • In: Human Molecular Genetics. - : Oxford University Press (OUP). - 0964-6906 .- 1460-2083. ; 20:16, s. 3322-3329
  • Journal article (peer-reviewed)abstract
    • Previous genome-wide association studies have identified two independent variants in HNF1B as susceptibility loci for prostate cancer risk. To fine-map common genetic variation in this region, we genotyped 79 single nucleotide polymorphisms (SNPs) in the 17q12 region harboring HNF1B in 10 272 prostate cancer cases and 9123 controls of European ancestry from 10 case-control studies as part of the Cancer Genetic Markers of Susceptibility (CGEMS) initiative. Ten SNPs were significantly related to prostate cancer risk at a genome-wide significance level of P < 5 × 10(-8) with the most significant association with rs4430796 (P = 1.62 × 10(-24)). However, risk within this first locus was not entirely explained by rs4430796. Although modestly correlated (r(2)= 0.64), rs7405696 was also associated with risk (P = 9.35 × 10(-23)) even after adjustment for rs4430769 (P = 0.007). As expected, rs11649743 was related to prostate cancer risk (P = 3.54 × 10(-8)); however, the association within this second locus was stronger for rs4794758 (P = 4.95 × 10(-10)), which explained all of the risk observed with rs11649743 when both SNPs were included in the same model (P = 0.32 for rs11649743; P = 0.002 for rs4794758). Sequential conditional analyses indicated that five SNPs (rs4430796, rs7405696, rs4794758, rs1016990 and rs3094509) together comprise the best model for risk in this region. This study demonstrates a complex relationship between variants in the HNF1B region and prostate cancer risk. Further studies are needed to investigate the biological basis of the association of variants in 17q12 with prostate cancer.
  •  
5.
  • Conti, David, V, et al. (author)
  • Trans-ancestry genome-wide association meta-analysis of prostate cancer identifies new susceptibility loci and informs genetic risk prediction
  • 2021
  • In: Nature Genetics. - : Springer Nature. - 1061-4036 .- 1546-1718. ; 53:1, s. 65-75
  • Journal article (peer-reviewed)abstract
    • Prostate cancer is a highly heritable disease with large disparities in incidence rates across ancestry populations. We conducted a multiancestry meta-analysis of prostate cancer genome-wide association studies (107,247 cases and 127,006 controls) and identified 86 new genetic risk variants independently associated with prostate cancer risk, bringing the total to 269 known risk variants. The top genetic risk score (GRS) decile was associated with odds ratios that ranged from 5.06 (95% confidence interval (CI), 4.84-5.29) for men of European ancestry to 3.74 (95% CI, 3.36-4.17) for men of African ancestry. Men of African ancestry were estimated to have a mean GRS that was 2.18-times higher (95% CI, 2.14-2.22), and men of East Asian ancestry 0.73-times lower (95% CI, 0.71-0.76), than men of European ancestry. These findings support the role of germline variation contributing to population differences in prostate cancer risk, with the GRS offering an approach for personalized risk prediction. A meta-analysis of genome-wide association studies across different populations highlights new risk loci and provides a genetic risk score that can stratify prostate cancer risk across ancestries.
  •  
6.
  • Dimitrakopoulou, Vasiliki I., et al. (author)
  • Interactions between genome-wide significant genetic variants and circulating concentrations of 25-Hydroxyvitamin D in relation to prostate cancer risk in the National Cancer Institute BPC3
  • 2017
  • In: American Journal of Epidemiology. - : Oxford University Press (OUP). - 0002-9262 .- 1476-6256. ; 185:6, s. 452-464
  • Journal article (peer-reviewed)abstract
    • Genome-wide association studies (GWAS) have identified over 100 single nucleotide polymorphisms (SNPs) associated with prostate cancer. However, information on the mechanistic basis for some associations is limited. Recent research has been directed towards the potential association of Vitamin D concentrations and prostate cancer, but little is known about whether the aforementioned genetic associations are modified by Vitamin D. We investigated the associations of 46 GWAS-identified SNPs, circulating concentrations of 25-hydroxyVitamin D (25 (OH)D), and prostate cancer (3,811 cases, 511 of whom died from the disease, compared with 2,980 controls- from 5 cohort studies that recruited participants over several periods beginning in the 1980s). We used logistic regression models with data from the National Cancer Institute Breast and Prostate Cancer Cohort Consortium (BPC3) to evaluate interactions on the multiplicative and additive scales. After allowing for multiple testing, none of the SNPs examined was significantly associated with 25(OH)D concentration, and the SNP-prostate cancer associations did not differ by these concentrations. A statistically significant interaction was observed for each of 2 SNPs in the 8q24 region (rs620861 and rs16902094), 25(OH)D concentration, and fatal prostate cancer on both multiplicative and additive scales (P ≥ 0.001). We did not find strong evidence that associations between GWASidentified SNPs and prostate cancer are modified by circulating concentrations of 25(OH)D. The intriguing interactions between rs620861 and rs16902094, 25(OH)D concentration, and fatal prostate cancer warrant replication.
  •  
7.
  • Dossus, Laure, et al. (author)
  • PTGS2 and IL6 genetic variation and risk of breast and prostate cancer : results from the Breast and Prostate Cancer Cohort Consortium (BPC3)
  • 2010
  • In: Carcinogenesis. - : Oxford University Press (OUP). - 0143-3334 .- 1460-2180. ; 31:3, s. 455-461
  • Journal article (peer-reviewed)abstract
    • Genes involved in the inflammation pathway have been associated with cancer risk. Genetic variants in the interleukin-6 (IL6) and prostaglandin-endoperoxide synthase-2 (PTGS2, encoding for the COX-2 enzyme) genes, in particular, have been related to several cancer types, including breast and prostate cancers. We conducted a study within the Breast and Prostate Cancer Cohort Consortium to examine the association between IL6 and PTGS2 polymorphisms and breast and prostate cancer risk. Twenty-seven polymorphisms, selected by pairwise tagging, were genotyped on 6292 breast cancer cases and 8135 matched controls and 8008 prostate cancer cases and 8604 matched controls. The large sample sizes and comprehensive single nucleotide polymorphism tagging in this study gave us excellent power to detect modest effects for common variants. After adjustment for multiple testing, none of the associations examined remained statistically significant at P = 0.01. In analyses not adjusted for multiple testing, one IL6 polymorphism (rs6949149) was marginally associated with breast cancer risk (TT versus GG, odds ratios (OR): 1.32; 99% confidence intervals (CI): 1.00-1.74, P(trend) = 0.003) and two were marginally associated with prostate cancer risk (rs6969502-AA versus rs6969502-GG, OR: 0.87, 99% CI: 0.75-1.02; P(trend) = 0.002 and rs7805828-AA versus rs7805828-GG, OR: 1.11, 99% CI: 0.99-1.26; P(trend) = 0.007). An increase in breast cancer risk was observed for the PTGS2 polymorphism rs7550380 (TT versus GG, OR: 1.38, 99% CI: 1.04-1.83). No association was observed between PTGS2 polymorphisms and prostate cancer risk. In conclusion, common genetic variation in these two genes might play at best a limited role in breast and prostate cancers.
  •  
8.
  • Gu, Fangyi, et al. (author)
  • Eighteen insulin-like growth factor pathway genes, circulating levels of IGF-I and its binding protein, and risk of prostate and breast cancer
  • 2010
  • In: Cancer Epidemiology, Biomarkers and Prevention. - : American Association for Cancer Research. - 1055-9965 .- 1538-7755. ; 19:11, s. 2877-2887
  • Journal article (peer-reviewed)abstract
    • Background: Circulating levels of insulin-like growth factor I (IGF-I) and its main binding protein, IGF binding protein 3 (IGFBP-3), have been associated with risk of several types of cancer. Heritable factors explain up to 60% of the variation in IGF-I and IGFBP-3 in studies of adult twins.Methods: We systematically examined common genetic variation in 18 genes in the IGF signaling pathway for associations with circulating levels of IGF-I and IGFBP-3. A total of 302 single nucleotide polymorphisms (SNP) were genotyped in >5,500 Caucasian men and 5,500 Caucasian women from the Breast and Prostate Cancer Cohort Consortium.Results: After adjusting for multiple testing, SNPs in the IGF1 and SSTR5 genes were significantly associated with circulating IGF-I (P < 2.1 × 10−4); SNPs in the IGFBP3 and IGFALS genes were significantly associated with circulating IGFBP-3. Multi-SNP models explained R2 = 0.62% of the variation in circulating IGF-I and 3.9% of the variation in circulating IGFBP-3. We saw no significant association between these multi-SNP predictors of circulating IGF-I or IGFBP-3 and risk of prostate or breast cancers.Conclusion: Common genetic variation in the IGF1 and SSTR5 genes seems to influence circulating IGF-I levels, and variation in IGFBP3 and IGFALS seems to influence circulating IGFBP-3. However, these variants explain only a small percentage of the variation in circulating IGF-I and IGFBP-3 in Caucasian men and women.Impact: Further studies are needed to explore contributions from other genetic factors such as rare variants in these genes and variation outside of these genes.
  •  
9.
  • Jacobs, Kevin B, et al. (author)
  • Detectable clonal mosaicism and its relationship to aging and cancer.
  • 2012
  • In: Nature Genetics. - New York : Nature Publishing Group. - 1061-4036 .- 1546-1718. ; 44:6, s. 651-658
  • Journal article (peer-reviewed)abstract
    • In an analysis of 31,717 cancer cases and 26,136 cancer-free controls from 13 genome-wide association studies, we observed large chromosomal abnormalities in a subset of clones in DNA obtained from blood or buccal samples. We observed mosaic abnormalities, either aneuploidy or copy-neutral loss of heterozygosity, of >2 Mb in size in autosomes of 517 individuals (0.89%), with abnormal cell proportions of between 7% and 95%. In cancer-free individuals, frequency increased with age, from 0.23% under 50 years to 1.91% between 75 and 79 years (P = 4.8 × 10(-8)). Mosaic abnormalities were more frequent in individuals with solid tumors (0.97% versus 0.74% in cancer-free individuals; odds ratio (OR) = 1.25; P = 0.016), with stronger association with cases who had DNA collected before diagnosis or treatment (OR = 1.45; P = 0.0005). Detectable mosaicism was also more common in individuals for whom DNA was collected at least 1 year before diagnosis with leukemia compared to cancer-free individuals (OR = 35.4; P = 3.8 × 10(-11)). These findings underscore the time-dependent nature of somatic events in the etiology of cancer and potentially other late-onset diseases.
  •  
10.
  • Klein, Alison P., et al. (author)
  • An absolute risk model to identify individuals at elevated risk for pancreatic cancer in the general population.
  • 2013
  • In: PLOS ONE. - : Public Library of Science. - 1932-6203. ; 8:9
  • Journal article (peer-reviewed)abstract
    • PURPOSE: We developed an absolute risk model to identify individuals in the general population at elevated risk of pancreatic cancer.PATIENTS AND METHODS: Using data on 3,349 cases and 3,654 controls from the PanScan Consortium, we developed a relative risk model for men and women of European ancestry based on non-genetic and genetic risk factors for pancreatic cancer. We estimated absolute risks based on these relative risks and population incidence rates.RESULTS: Our risk model included current smoking (multivariable adjusted odds ratio (OR) and 95% confidence interval: 2.20 [1.84-2.62]), heavy alcohol use (>3 drinks/day) (OR: 1.45 [1.19-1.76]), obesity (body mass index >30 kg/m(2)) (OR: 1.26 [1.09-1.45]), diabetes >3 years (nested case-control OR: 1.57 [1.13-2.18], case-control OR: 1.80 [1.40-2.32]), family history of pancreatic cancer (OR: 1.60 [1.20-2.12]), non-O ABO genotype (AO vs. OO genotype) (OR: 1.23 [1.10-1.37]) to (BB vs. OO genotype) (OR 1.58 [0.97-2.59]), rs3790844(chr1q32.1) (OR: 1.29 [1.19-1.40]), rs401681(5p15.33) (OR: 1.18 [1.10-1.26]) and rs9543325(13q22.1) (OR: 1.27 [1.18-1.36]). The areas under the ROC curve for risk models including only non-genetic factors, only genetic factors, and both non-genetic and genetic factors were 58%, 57% and 61%, respectively. We estimate that fewer than 3/1,000 U.S. non-Hispanic whites have more than a 5% predicted lifetime absolute risk.CONCLUSION: Although absolute risk modeling using established risk factors may help to identify a group of individuals at higher than average risk of pancreatic cancer, the immediate clinical utility of our model is limited. However, a risk model can increase awareness of the various risk factors for pancreatic cancer, including modifiable behaviors.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 21

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view